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Abstract. Appearance-based bag-of-visual words (BoVW) models are employed to represent the frequency of a
vocabulary of local features in an image. Due to their versatility, they are widely popular, although they ignore the
underlying spatial context and relationships among the features. Here, we present a unified representation that
enhances BoVWswith explicit local and global structure models. Three aspects of our method should be noted in
comparison to the previous approaches. First, we use a local structure feature that encodes the spatial attributes
between a pair of points in a discriminative fashion using class-label information. We introduce a bag-of-struc-
tural words (BoSW) model for the given image set and describe each image with this model on its coarsely
sampled relevant keypoints. We then combine the codebook histograms of BoVW and BoSW to train a classifier.
Rigorous experimental evaluations on four benchmark data sets demonstrate that the unified representation
outperforms the conventional models and compares favorably to more sophisticated scene classification tech-
niques. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.3.033008]
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1 Introduction
Image classification is one of the primary tasks for visual
understanding, with a wide variety of applications. Most
image classification algorithms incorporate bag-of-visual
words (BoVW) models since they are simple, robust to cer-
tain affine transformations, and capable of providing a uni-
form feature space irrespective of the number of visual word
detections. Nevertheless, BoVW models have also several
drawbacks, including the lack of spatial composition of vis-
ual words in the model, absence of structural cues, and poor
interpretation of context for image classification.

Many techniques have been proposed to model spatial
context for BoVW. Relative positions of codewords are taken
into account in Ref. 1 for generative models. Lazebnik et al.2

introduced a spatial pyramid matching model, in which the
histograms of local features found inside subregions are con-
catenated for constructing spatial structures. Correlogram
features3 are proposed to capture spatial co-occurrences of
features. Niu et al.4 developed a discriminative latent
Dirichlet allocation model to capture two types of contextual
information, global spatial layout, and visual coherence in
uniform local regions. Bolovinou et al.5 presented a spatio-
visual descriptor to encode ordered spatial configurations of
visual words. Shaohua and Aggarwal6 used a topic model
based on a mixed membership stochastic model, in which
the latent topics of adjacent visual words are jointly gener-
ated. Xie et al.7 utilized a fused edge-scale invariant feature
transform (SIFT) descriptor at the descriptor extraction level.
Although these methods have been shown to provide certain
solutions, they may also tend to overfit data, incur high com-
putational complexity, be limited to predefined grids, and
pertain to local structure.

Intuitively, contextual information, i.e., the spatial rela-
tionships among image features, provides crucial feedback

in disambiguating visual words. This subsequently leads
to improved recognition performance. To this end, we pro-
pose a method to encode spatial information of visual words
both globally and locally as shown in Fig. 1.

In comparison to state-of-the-art BoVW models, our
method provides several enhancements. First, we analyze
two types of BoVW models, where images are sampled
from a dense grid and a set of sparse interest points, respec-
tively. For both models, we encode both global and local spa-
tial representations of the visual words as midlevel features
after a common codebook is trained and interest point descrip-
tors are quantized onto the visual vocabulary. For the local
spatial representation, we determine pairwise interest point cli-
ques by associating the relevant points and compute a struc-
ture feature for each clique to describe the spatial relationships
between the points of the clique. From these structure features,
we learn a bag-of-structural words (BoSW) model that pro-
vides structural information across interest points. Finally,
we concatenate the dense BoVW model and the BoSW
model to train a potent support vector machine (SVM) clas-
sifier. To summarize, our contribution is threefold:

• BoSW model using structure features,
• unified representation of local and global informa-

tion, and
• classification framework built on top of BoVW/BoSW.

2 Spatial Encoding of Visual Words

2.1 Bag-of-Visual Words
Suppose, for a given image data set {Im}, we extract a set of
keypoints {pn} from all images and compute the corre-
sponding descriptors fn for the keypoints. The descriptor
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can be, for instance, the histogram of oriented gradients
within the local support. By k-means clustering these
descriptors into d words with 4-neighbor soft weighting,8

we construct a BoVW vocabulary VV ¼ fv1; : : : ; vdg.
Then, we use this vocabulary to obtain an encoding Fm
of each image

EQ-TARGET;temp:intralink-;e001;63;491Fm ¼ ½ðpn; vnÞ�pn∈Im ; (1)

where vn is the visual word assigned to the descriptor fn of
the keypoint pn in Im.

Each image Im is further represented by a d-dimensional
histogram Hm ¼ ½hm;1; : : : ; hm;d� of the words, where hm;k is
the bin corresponding the visual word k. Keypoints {pn} can
be sampled on a grid to construct a denseBoVW model, or
selected from sparse interest points, e.g., using SIFT key-
points, to build a coarseBoVW model.

2.2 Structure Features
We introduce a feature si;j that encodes the spatial attributes
of the edge eij between a pair of relevant keypoints pi and
pj, which are selected from the coarse interest points. Two
keypoints are considered relevant if they satisfy one of the
following conditions:

1. the spatial distance between them is small:
δðpi; pjÞ < ξ, and

2. both vi and vj belong to the most frequent k words.

That is, we select the short edges, and also include the
edges between the points that have the assigned visual

words, which rank within the top K most frequent words
for the specific input image (instead of the entire image
set). An example is shown in Fig. 2, where the keypoints
of short edges are marked in red and the most frequent K ¼
4 visual words are marked in green, white, blue, and orange,
respectively.

For each edge eij, we compute a feature vector of spatial
attributes. The first component of this feature characterizes
the orientation θij of the edge. To provide an efficient rep-
resentation that allows us computing orientation dissimilarity
using vector operations and circumventing the circular ambi-
guity in orientation computation, we adopt a polar histogram
Θij. Around the central point of the eij, we quantize the polar
space into B bins. The orientation of the edge votes on the
corresponding histogram bins of Θij with a Gaussian distri-
bution Nðθij; σÞ centered on the bin of the edge orientation
θij in a circular fashion, e.g., the last and the first bins are
considered consecutive. Typical parameters for this histo-
gram are σ ¼ 5 and B ¼ 18.

The orientation histogram does not contain the informa-
tion on the word labels vi and vj of the edge points pi and pj.
To this end, we analyze the contribution factor for each vis-
ual word to the image classes. Let {Im} contains C classes.
An image in the c’th class is represented by the BoVW histo-
gram Hc

m ¼ ½hcm;1; : : : ; h
c
m;d�. Suppose Nc denotes the num-

ber of images in the c’th class. Then, the mean histogram of
visual words for the c’th class is denoted as Hc

μ

EQ-TARGET;temp:intralink-;e002;326;455Hc
μ ¼

1

Nc

XNc

m¼1

Hc
m ¼ 1

Nc

�XNc

m¼1

hcm;1; : : : ;
XNc

m¼1

hcm;d

�
¼ ½μc1; : : : ;μcd�;

(2)

where μck denotes the mean occurrences of the k’th visual
word in the c’th class, which represents the contribution
of that visual word to the corresponding class. Then, the con-
tribution vector of the k’th visual word to all classes is
obtained as

EQ-TARGET;temp:intralink-;e003;326;338CðkÞ ¼ ½μ1k; : : : ; μCk �; k ¼ 1; : : : ; d: (3)

For an edge eij of a pair of relevant points pi and pj with
the visual word labels vi and vj, the final structure feature sij
is composed by combining the orientation histogram, the
contribution vectors CðviÞ and CðvjÞ
EQ-TARGET;temp:intralink-;e004;326;268sij ¼ ½Θij;CðviÞ þ CðvjÞ�; (4)

which is symmetric in the order of points, i.e., sij ¼ sji. For a
data set with 10 classes, the dimension of sij is 18þ 10.

Fig. 1 Overview of the unified BoVW and BoSW representations.

Fig. 2 (a) Relevant points obtained by distance cutoff, (b) relevant points obtained from themost frequent
visual words, (c) all relevant points, and (d) relevant points of a point (the rightmost green point).
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Similar to the appearance counterpart, we cluster the
structure features sij of all images in the data set by
k-means clustering to construct the BoSW vocabulary
VS ¼ fs1; : : : ; stg. Then, we use the BoSW vocabulary to
obtain an encoding Sm of each image

EQ-TARGET;temp:intralink-;e005;63;697Sm ¼ ½ðsij; eijÞ�eij∈relevant keypoints: (5)

Each image Im is then represented by a t-dimensional
structure histogram HSm.

2.3 Image Representation
As shown in Fig. 1, a given image Im is sampled densely (on
a grid) and coarsely (on keypoints), which results in
denseBoVW and coarseBoVW models, respectively. We
then concatenate the encoding of BoSW with the encodings
of denseBoVW and coarseBoVW models, respectively. For
instance, the image representation of the denseBoVW+BoSW
version concatenates the denseBoVW encoding Hm of the
image Im with the BoSWencodingHSm to construct the final
descriptor. Note that feature representations of the BoSW in
“BoSW,” “coarseBoVW+BoSW,” and “denseBoVW+BoSW”
are equivalent, yet the later two models employ both appear-
ance and structure features, while “BoSW” uses only the
structure features.

3 Experimental Results
We evaluated the performance of our methods on four large-
scale data sets, i.e., MSRC-99 (9 categories), LabelMe10 (8
categories), UIUC-Sports11 (8 categories), and the LULC
data set12 (21 categories), depicting natural scenes, aerial
orthoimagery images, and complex events. For the sake of
consistency with reference works, we employ the published
protocols on these data sets. For the LULC andMSRC-9 data
sets, we report the mean classification accuracy upon a five-
fold cross-validation setting for all categories following
Refs. 13 and 14. Similar to Refs. 4 and 6, we randomly select
100 images per category for training and 100 for testing on
the LabelMe data set. For the UIUC-Sports data set, we ran-
domly select 70 and 60 images per class for training and test-
ing, respectively.

3.1 Bag-of-Structural Words Variants
We first analyzed the effect of the kernel on the classification
performance. As the base classifier, we tested SVM with lin-
ear, radial bases function (RBF), sigmoid, and histogram
intersection (HI) kernels on the MSRC-9 data set. The results
are shown in Table 1. For consistency, we trained the BoSW
variants using the same codebook size of coarseBoVW; e.g.,
the base BoVS codebook size is d ¼ 300 for both variants.
Our results indicated that the HI kernel provides the best

classification performance for both variants. Based on this
observation, we used the HI for the following evaluations.

Next, we examined the classification accuracy against the
different base codebook sizes. The results of different var-
iants of our method for different base codebook sizes on
four data sets are summarized in Table 2. We observe

1. The accuracy of the conventional coarseBoVW is
inferior to other choices. In addition, increasing the
base codebook size causes performance degrada-
tion. A striking outcome is that learning the represen-
tation on a dense grid, i.e., denseBoVW, achieves bet-
ter classification accuracy than the prevailing bag-of-
word reconstruction on keypoints, i.e., coarseBoVW.
However, the improvement quickly saturates for larger
base codebook sizes.

Table 1 Classification accuracy for different SVM kernels on
MSRC-9 data set. Base codebook size is d ¼ 300.

Methods Linear (%) RBF (%) Sigmoid (%) HI (%)

BoSW 67.04 70.07 72.96 73.70

DenseBoVW+BoSW 82.22 87.41 84.81 90.00

Note: Bold values indicate the best results.

Table 2 Classification accuracy of baseline and our methods with
different base codebook sizes on various data sets.

Data sets Methods
100
(%)

200
(%)

400
(%)

1024
(%)

MSRC-9 CoarseBoVW 57.41 63.70 68.51 67.78

DenseBoVW 79.62 83.33 85.50 85.91

BoSW 59.62 71.85 77.78 95.56

CoarseBoVW.BoSW 60.00 73.33 82.22 97.03

DenseBoVW+BoSW 81.85 87.41 92.96 97.78

LabelMe CoarseBoVW 59.22 62.83 66.96 68.19

DenseBoVW 82.63 82.91 85.30 86.18

BoSW 55.02 62.02 69.75 75.29

CoarseBoVW+BoSW 62.79 67.15 70.83 76.73

DenseBoVW+BoSW 86.35 88.03 88.67 90.30

UIUC CoarseBoVW 45.47 48.70 51.67 53.21

DenseBoVW 71.52 73.68 75.12 77.62

BoSW 46.61 54.78 60.22 65.32

CoarseBoVW+BoSW 48.38 55.15 61.53 66.58

DenseBoVW+BoSW 75.61 79.92 83.28 87.52

LULC CoarseBoVW 68.04 71.33 75.04 75.38

DenseBoVW 77.85 79.85 81.12 81.71

BoSW 58.81 66.52 72.19 74.85

CoarseBoVW+BoSW 67.91 72.33 77.67 78.42

DenseBoVW+BoSW 81.57 83.57 85.61 88.33

Note: Bold values indicate the best results.
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2. The proposed BoSW has potential to attain further
improvement with increasing base codebook size.
Employing only discriminative structure features out-
performs appearance-based baselines, in particular
when the base codebook size is large.

3. Albeit handicapped, the coarseBoVW’s performance
increases significantly when it is combined with the
BoSW.

4. The proposed denseBoVW+BoSW is superior to all
other baselines in all base codebook sizes. This dem-
onstrates the effectiveness of our method. Variants
using the structure features consistently outperform
the baseline BoVW models independent of the sam-
pling mode.

Lastly, we analyze the computational load of the proposed
method implemented in MATLAB® R2014a running on an
Intel i5-2400 processor at 3.1 GHz with 4 GB RAM. The
computational times for feature extraction and assignment
(per image) and clustering (into 200 visual words) on the
MSRC-9 data set are shown in Table 3.

3.2 Comparisons with the State of the Art
We compared against 15 recent state-of-the-art image clas-
sification methods. Table 4 presents the image classification
performance. The second column shows the base codebook
sizes for the BoVW-based methods.

As is visible, our method consistently generates the most
accurate results among the BoVW-based approaches. The
proposed denseBoVW+BoSW achieves the best perfor-
mance in the MSRC-9 and UIUC-Sports, and LULC data
sets, and ranks second best in the LabelMe data set.16

Several of the methods we evaluated4,11,17,18,20,22 employ
dense models and learn sophisticated higher level represen-
tations; thus, their final feature dimensions for image classi-
fication in many cases are much greater than their base
codebook sizes. Our method using even 200 codebook
size outperforms many other BoVW-based approaches. This
high classification accuracy underlines the advantage of our
joint use of low-level and structure features. As expected,
insensitivity to spatial information is a major weakness of
other BoVW-based methods. In our experiments, Niu et
al.4 achieves the second best among BoVW-based methods
in LabelMe and UIUC datasets as a result of its explicit mod-
elling of the contextual information.

Also notice that our goal is not low-level feature learning.
For example, the work in Ref. 21 attains 86.64% on the
LULC data set; however, it requires multiple features [SIFT,
local binary pattern, and color], while our method uses only
SIFT. The work in Ref. 16 is not a BoVW-based method,
uses a hybrid generative score-space scheme on top of
local features and 40 latent topics, and imposes the varia-
tional free energy of a generative model as a primary source

for classification. For the same reason, we did not compare
against Ref. 23, which learns spatial pooling regions jointly
with discriminative part appearances in a unified optimiza-
tion framework. In Ref. 19, a latent SVM model regularized
by group sparsity to learn class-specific part detectors is pro-
posed, which is not based on BoVW either.

There is also very recent work13,24 on image classification
using convolutional neural networks (CNNs), which can be
considered data-driven feature learning. They are not bag-of-
words models. The proposed denseBoVW+BoSW out-
performs13 these, as shown in Table 4. Furthermore, our
method has the potential to incorporate features learned by
a CNN framework to provide additional structure via the
receptive field of the fully connected layer neurons.

3.3 Parameters
For the dense sampling strategy, we extracted SIFT features
from 16 × 16 patches over a grid with spacing of 8 pixels for

Table 3 Running times (s) for baseline BoVWand BoSWonMSRC-9.

CoarseBoVW DenseBoVW BoSW

Feature extraction 0.21 0.93 0.82

Clustering 68.23 209.67 173.47

Table 4 Classification accuracy of state-of-the-art (ordered accord-
ing to publication dates).

LabelMe
(%)

MSRC9
(%)

UIUC
(%)

LULC
(%)

Lazebnik et al.2 200 81.20 84.20 72.00 81.30

Li and Fei-Fei11 300 86.00 — 73.40 —

Wang et al.15 240 81.87 — 65.00 —

Perina et al.16,a — 92.00 80.40 — —

Yang and Newsam12 300 — — — 81.19

Wu and Rehg17 200 86.20 — 78.30 —

Niu et al.18 800 80.00 — 68.00 —

Niu et al.4 500 87.00 — 78.00 —

Sun and Ponce19,b — — — 86.40 —

Zheng et al.20 240 83.43 — 77.29 —

Shaohua and Aggarwal 6,c — 81.20 — 77.60 —

Zhao et al.21 300 — — — 86.64

Zang et al.22 240 80.00 — 71.00 —

Romero et al.13,d — — — — 84.53

Chen and Tian14 1000 — — — 87.60

Ours 200 88.03 87.41 79.92 83.57

Ours 1024 90.30 97.78 87.52 88.33

Note: Best values are denoted in bold and second-best values are
denoted in italics.
aUses a probabilistic index map generative model followed by a free-
energy–based optimization.

bEmploys part-based models.
cImposes local spatial homogeneity of latent topics.
dA CNN-based method.
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all images. For the BoSW, we used t ¼ 2d. We chose the
distance threshold ξ and the prevalence limit K on the val-
idation data. The results for different parameter settings on
four data sets are shown in Fig. 3. The limit K determines
how many most frequent words should contribute to the
structure features. Its lower values improve the robustness
but also cause loss of discriminative potential of the
BoSW model. The distance cutoff threshold ξ sets the maxi-
mum possible distance between the relevant keypoints, thus
determining the size of the local support. As shown, our
method is robust to parameterization and demonstrates rel-
atively consistent performance. The performance changes
only slightly with respect to K. For the parameter ξ, the per-
formance saturates for values of ξ larger than 50 on all data
sets. To achieve a trade-off between discriminative power
and robustness, we set K ¼ 4 and ξ ¼ 50 in all experiments.

4 Conclusion
We present an efficient spatial encoding of visual words that
incorporates both local and global structures for image clas-
sification using a second layer of spatial encoding with
features. We show that by constructing features using appear-
ance- and structure-based bag-of-words models, it is possible
to achieve more accurate and robust representations.
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Fig. 3 Classification accuracy for different parameter settings
(d ¼ 200). (a) The prevalence limit K and (b) the distance cutoff ξ.
As shown, the proposed method has relatively low sensitivity to
parameters.
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